5.7. Магнитомягкие материалы

5.7.1. Основные характеристики магнитомягких материалов

Основными характеристиками магнитомягких материалов являются:

- начальная магнитная проницаемость µн;
- максимальная магнитная проницаемость µ_{max};
- магнитная индукция насыщения В_s;
- коэрцитивная сила H_c ;
- потери на перемагничивание Р;
- удельное электрическое сопротивление ρ.

Для магнитомягких материалов важно иметь большое значение магнитной проницаемости, индукции насыщения, удельного электрического сопротивления и наименьшее значение коэрцитивной силы и магнитных потерь.

Примеси и дефекты кристаллического строения, искажая кристаллическую решетку, способствуют снижению μ и возрастанию H_c . Особенно сильно влияют примеси внедрения в виде мелкодисперсных включений. Наилучшей структурой для магнитомягких материалов является однофазный твердый раствор замещения. Чем крупнее зерно, тем выше μ , B_s , ниже H_c и магнитные потери.

Напряженно-деформированное состояние способствует росту плотности дефектов и искажению решетки, измельчению зерна, что приводят к резкому падению μ и возрастанию H_c .

В связи с этим наилучшей термообработкой для магнитомягких материалов является *отжиг*. При отжиге снимаются напряжения, уменьшается плотность дефектов, образуется равновесная крупнозернистая структура. В результате улучшаются магнитные свойства: возрастают μ , B_s и снижается H_c .

Из всех магнитных характеристик наибольшим изменениям в эксплуатации подвержены магнитная проницаемость (особенно в слабых полях $\mu_{\rm h}$) и коэрцитивная сила $H_{\rm c}$.

5.7.2. Низкочастотные магнитомягкие материалы

К низкочастотным магнитомягким материалам относятся:

- железо (техническое, электролитическое, карбонильное);
- электротехническая сталь (нелегированная и легированная);
- пермаллои (сплавы Fe-Ni);
- альсифер (сплав Al-Si-Fe).

Железо и электротехническая сталь относятся к материалам с высокой индукцией насыщения, а пермаллои и альсифер - к высокопроницаемым материалам.

Значения основных характеристик низкочастотных магнитомягких материалов представлены в табл. 22.

Таблица 22 Основные характеристики низкочастотных магнитомягких материалов

Материал	µ _{нач}	μ_{max}	<i>H</i> _c , А/м	<i>В_т,</i> Тл	ρ, мкОм·м
Техническое железо	400	4000	50100	2,2	0,1
Электролитическое железо	600	15000	30	2,2	0,1
Карбонильное железо	3000	20000	6,4	2,2	0,1
Монокристалл чистого железа	20000	1,4 [.] 10 ⁶	0,8	1	0,1
Электротехническая сталь	200600	30008000	1065	2,0	0,250,6
Низконикелевые пермаллои	4000	(1560) [.] 10 ³	530	1,01,6	0,450,9
Высоконикелевые пермаллои	7·10 ³ 10 ⁵	10 ⁴ 3 [.] 10 ⁵	0,655	0,651,05	0,160,85
Супермаллой: 79HM: 79%Ni, 5%Mo, 15%Fe, 0,5%Mn	100000	1,5 [.] 10 ⁶	0,3	0,8	0,6
Альсифер: 5,6%AI, 9,5%Si Fe ост.	35400	117000	1,8		0,8

Железо является основным компонентом большинства магнитных материалов. Из простых магнитомягких материалов железо обладает наибольшей индукцией насыщения. Магнитные свойства железа существенно зависят от содержания примесей. Наибольшей магнитной проницаемостью обладает электролитическое и карбонильное железо, содержащее не более 0,05% примесей. В техническом железе примесей до 0,1%. **Электролитическое железо** получают путем электролиза сернокислого или хлористого железа.

Карбонильное железо получают в виде тонкого порошка путем термического разложения пентакарбонила железа:

$$Fe(CO)_5 \rightarrow Fe + 5CO$$
.

Сердечники изготовляют прессованием.

Кремнистая электротехническая сталь является магнитомягким материалом массового применения. Основной легирующий элемент - кремний. Кремний повышает удельное электрическое сопротивление стали, что приводит к снижению потерь на вихревые токи. Кроме того, кремний способствует укрупнению зерна, увеличению μ и снижению H_c . Положительное влияние кремния на магнитную проницаемость стали обусловлено также уменьшением констант магнитной анизотропии и магнитострикции. Различают нелегированную и легированную электротехническую сталь. В нелегированных электротехнических сталях Si < 0,4%.

В легированных электротехнических сталях Si до 5%. Она изготовляется в виде листов и лент толщиной до 1 мм.

Кремнистая сталь обладает магнитной анизотропией подобно чистому железу: направление легкого намагничивания (100), а трудного - (111).

Свойства стали значительно улучшаются за счет образования магнитной текстуры при холодной прокатке и последующего отжига в водороде. При прокатке получают преимущественную ориентацию зерен (текстуру деформации), а при последующем отжиге (900...1000°С) в процессе рекристаллизации - крупнозернистую структуру с ориентировкой зерен осями легкого намагничивания в направлении прокатки. Получается так называемая ребровая текстура (рис. 50).

Текстурованная сталь анизотропна. Вдоль направления прокатки у стали более высокая магнитная проницаемость и меньшие потери на гистерезис. Применение текстурованной стали позволяет снизить массу и габариты сердечников силовых трансформаторов на 20...25%, а радиотрансформаторов до 40%.

Пермаллой - это сплав железа с никелем. Различают низконикелевые (Ni до 50%) и высоконикелевые пермаллои. На рис. 51 показаны зависимости μ , H_c и ρ от содержания никеля.

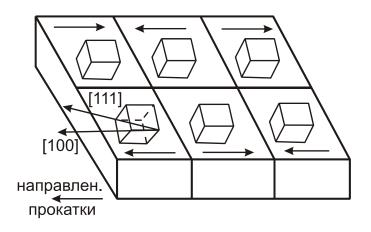


Рис. 50. Схема ориентации зерен в холоднокатаной кремнистой стали (ребровая текстура)

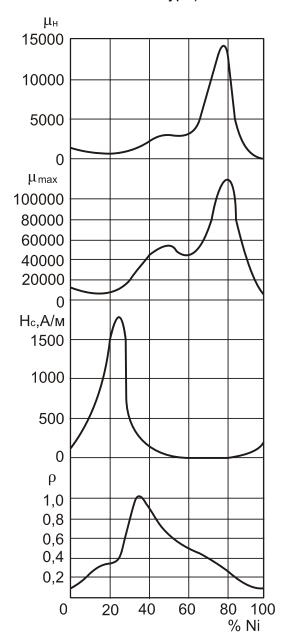


Рис. 51. Зависимость магнитных свойств пермаллоев от содержания никеля

Маркировка пермаллоев: 45H, 50H, 42HC, 50HXC, 76HXC, 79HM, 50HП, 65HП и т.д. Цифры показывают содержание никеля в процентах. Буквенные обозначения: Н - никель, X - хром(1-3%), С - кремний(1-2%), Д - медь (5-14%), М - молибден(3-5%); П - с прямоугольной петлей гистерезиса.

Кремний и хром повышают ρ . Молибден повышает μ , ρ и снижает чувствительность к деформациям. Медь способствует постоянству μ при изменении температуры.

Пермаллои обладают высокой магнитной проницаемостью в слабых полях и низкой коэрцитивной силой. Высокие магнитные свойства пермаллоев обусловлены нулевыми значениями констант магнитострикции и магнитной анизотропии. Магнитные свойства пермаллоев чрезвычайно чувствительны к напряжениям и деформации. Поэтому термообработка пермаллоев проводится с особой тщательностью и направлена на получение равновесной крупнозернистой структуры типа гомогенного твердого раствора. Кроме того, в электротехнических устройствах предусматривают специальные меры защиты пермаллоевых сердечников от механических нагрузок. Наивысшей магнитной проницаемостью обладает супермаллой 79НМ (табл. 22), подвергнутый специальной термомагнитной обработке. Она заключается в нагреве до 1100...1200°С в вакууме или среде водорода, выдержке в течение 3...5 часов для снятия магнитострикционного эффекта и медленном охлаждении со скоростью 20...50°С/ч в слабомагнитном поле.

Свойства пермаллоев:

- высоконикелевые пермаллои имеют высокие µ_н, µ_{max} и низкую Нс, что связано с нулевыми значениями констант магнитострикции и магнитной анизотропии;
- низконикелевые пермаллои имеют более высокую индукцию насыщения (в 1,5 раза), и более низкое ρ (почти в 3 раза). Низкое ρ определяет высокие потери на вихревые токи, для них проще термообработка.

Пермаллои широко используются в автоматике и вычислительной технике для изготовления малогабаритных трансформаторов различного типа и назначения, реле, магнитных усилителей, бесконтактных переключателей, магнитных экранов и т.д.

Альсифер - это тройной сплав системы Al-Si-Fe. Оптимальный состав альсифера: 5,6%Al, 9,5%Si, остальное - Fe. По своим магнитным свойствам альсифер не уступает высоконикелевым пермаллоям. Альсифер отличается высокой твердостью и хрупкостью. Изделия из альсифера (магнитные экраны, корпуса приборов) изготовляют методом литья с толщиной стенок 2...3 мм. Альсифер, размолотый в виде порошка, наряду с карбонильным железом, используется для изготовления высокочастотных прессованных сердечников.

5.7.3. Высокочастотные магнитомягкие материалы

К высокочастотным магнитомягким материалам относятся *магнитодиэлектрики и ферриты*. На высоких частотах магнитные потери обусловлены, главным образом, релаксационными и резонансными явлениями. Для оценки допустимого частотного диапазона материала вводят понятие *критической частоты* $f_{\kappa p}$, при которой $tg\delta = 0,1$.

Частотные диапазоны:

- низкие радиочастоты НЧ ($f_{\kappa\rho}$ = 0,1...20 МГц);
- высокие радиочастоты ВЧ ($f_{\kappa\rho}$ = 30...300 МГц);
- высокие (< 800 МГц) и сверхвысокие (≥ 800 МГц) частоты.

В диапазоне звуковых и ультразвуковых частот в средних и сильных полях и $\mu_H = 400...2000$ применяют рулонные холоднокатные кремнистые стали (h = 25...30 мкм) и пермаллои (h = 2...3 мкм).

Магнитодиэлектрики - это композиции из порошков высокопроницаемого магнитного материала (альсифера, карбонильного железа, пермаллоя) с диэлектрической связкой (фенолформальдегидной смолой, полистиролом, стеклом и т.д.). Диэлектрик образует между зернами ферромагнетика сплошную пленку и прочно связывает зерна между собой. Суммарные потери в магнитодиэлектрике складываются из магнитных и диэлектрических потерь. Для уменьшения потерь, особенно от вихревых токов, нужно применять мелкий порошок ферромагнетика с тщательной изоляцией отдельных зерен. Средний размер зерен карбонильного железа 1...5 мкм. Сердечники на основе карбонильного железа отличаются достаточно высокой стабильностью, малыми потерями, положительным темпе-

ратурным коэффициентом магнитной проницаемости и используется в широком диапазоне частот. Альсифер в зависимости от содержания кремния и алюминия может иметь температурный коэффициент магнитной проницаемости α_{μ} от положительных до отрицательных значений и можно создавать сердечники с термостабильными свойствами.

Магнитодиэлектрики на основе суперпермаллоя 79НМ имеют наибольшую начальную магнитную проницаемость, магнитные потери у них меньше, чем у альсиферовых (при равных µ), а стабильность параметров выше.

Для магнитодиэлектриков характерна невысокая магнитная проницаемость $\mu_H = 10...250$, верхний предел рабочих температур составляет $100...120^{\circ}$ C, $\rho = 10^2...10^4$ Ом·м. Однако высокая стабильность магнитных свойств во времени (снижение μ_H за год - на 0,2...2%) является важным преимуществом магнитодиэлектриков перед другими магнитомягкими материалами.

Магнитодиэлектрики применяют при изготовлении прессованных сердечников в индуктивных катушках фильтров, частотомеров, контуров радиоаппаратуры и т.д.

Ферриты - это оксидные материалы, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом. Наиболее широкое применение нашли ферриты со структурой природного минерала шпинели. Общая формула ферритов

$$MeO \cdot Fe_2O_3 = Me \cdot Fe_2O_4, \tag{5.8}$$

где Me - 2-валентный металл (Ni, Mg, Zn, Mn и др.).

Элементарная ячейка шпинели сложная кубическая (рис. 52). В нее входят 8 структурных единиц MeFe₂O₄, т.е. 32 иона кислорода, 16 ионов 3-валентного железа и 8 ионов 2-валентного металла. Кислородные ионы имеют плотную кубическую упаковку и образуют 8 тетраэдрических (A) и 16 октаэдрических (B) междоузлий, в центре которых располагаются ионы металлов.

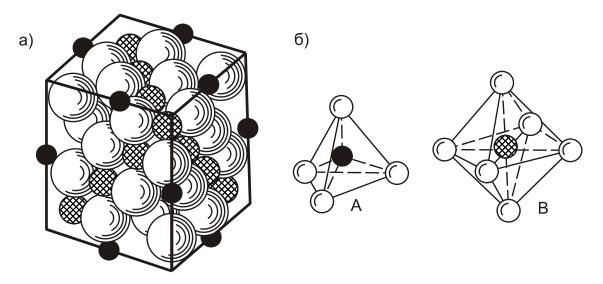


Рис. 52. Элементарная ячейка шпинели (а) и кислородные междоузлия (б) тетраэдрического (А) и октаэдрического (В) типа, в центре - катионы металлов

Природа ферримагнетизма. В ферримагнетиках магнитоактивные ионы металлов разделены ионами кислорода. Прямое обменное взаимодействие между ионами металлов отсутствует, их электронные оболочки не перекрываются. В соответствии с теорией ферримагнетизма, основы которой разработаны Неелем, в ферримагнетиках решающую роль играет косвенное взаимодействие ионов металлов при участии ионов кислорода.

На рис. 53 показана схема косвенного обменного взаимодействия в феррите никеля. Внешняя 2*р-*оболочка кислородного аниона полностью заполнена электронами, причем спиновые моменты попарно скомпенсированы. В то же время незаполненные 3*d*-оболочки катионов никеля и железа имеют соответственно два и пять нескомпенсироваиных спинов. Предполагается, что в кристаллической решетке феррита диамагнитный ион кислорода может возбуждаться и отдавать один из своих валентных электронов ближайшему катиону, например катиону никеля Ni²⁺. Принцип Паули требует, чтобы спин переходящего электрона был антипараллелен магнитному моменту катиона. Отдавая электрон, кислородный анион тоже приобретает магнитный момент и участвует в обменном взаимодействии с другим соседним катионом, в данном случае - с катионом железа. Благодаря сильному перекрытию электронных оболочек, a/d < 1.5, это обменное взаимодействие носит антиферромагнитный характер. Конечным результатом такого сложного электронного процесса является антипараллельная ориентация магнитных моментов взаимодействующих катионов.

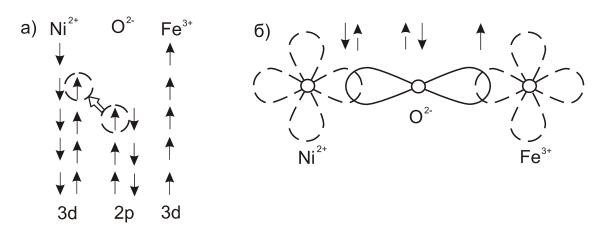


Рис. 53. Схема косвенного обменного взаимодействия никеля в феррите: а – расположение спинов в наружных оболочках взаимодействующих ионов; б – перекрытие электронных оболочек ионов

Большинство ферритов имеют структуру, в которой ионы 2валентного металла и 3-валентного железа занимают позиции A и B (рис. 52), т.е. структурная формула имеет вид:

$$(\vec{M}e_{1-x}^{2+}\vec{F}e_x^{3+})[\vec{M}e_x^{2+}\vec{F}e_{2-x}^{3+}]O_4,$$
 (5.9)

в круглых скобках указаны ионы, занимающие тетраэдрические междоузлия (А), в квадратных - октаэдрические (В), стрелки условно указывают направления магнитных моментов ионов.

Структурная формула показывает, что решетка феррита состоит из двух подрешеток A и B с антипараллельной намагниченностью. Такая структура феррита обеспечивает максимальную эффективность обменного взаимодействия, если три взаимодействующих иона находятся на одной прямой (рис. 53,б). Спонтанная намагниченность феррита - щпинели равна разности намагниченностей двух подрешеток:

$$|I_{M} = I_{MB} - I_{MA}|.$$

Магнетизм ферритов проявляется как нескомпенсированный антиферромагнетизм. С повышением температуры ослабляются силы обменного взаимодействия между ионами, намагниченность уменьшается и при некоторой температуре полностью

исчезает. Температура перехода феррита в парамагнитное состояние называется точкой Нееля или антиферромагнитной точкой Кюри (T_{κ}) .

Электропроводность ферритов обусловлена процессами электронного обмена между ионами переменной валентности. В ферритах-шпинелях кроме ионов 3-валентного железа Fe^{3+} всегда имеются ионы 2-валентного Fe^{2+} . Концентрация ионов 2-валентного железа - основной фактор, влияющий на электропроводность ферритов. В феррите железа Fe_3O_4 концентрация Fe^{2+} максимальна, $\rho = 5\cdot 10^{-5}$ Ом·м. В феррогранатах концентрация Fe^{2+} ничтожно мала, $\rho = 10^{10}$ Ом·м. Чем больше в феррите Fe^{2+} , тем ниже ρ . Концентрация электронов в феррите неизменна, но с ростом температуры растет интенсивность теплового движения ионов, электроны Fe^{2+} чаще перескакивают к Fe^{3+} , понижая их валентность, концентрация Fe^{2+} возрастает, ρ уменьшается по экспоненте

$$\rho = \rho_0 \cdot \exp[\mathcal{G}_0/\kappa T],$$

где ρ_0 - постоянная величина для данного феррита; $\mathcal{G}_0 = 0,1...0,5$ эВ - энергия активации электропроводности.

Снижение ρ ослабляет магнитострикцию и анизотропию, что способствует увеличению $\mu_{\rm H}$, поэтому ферриты с высокой $\mu_{\rm H}$ имеют более низкие значения ρ . У ферритов одной группы (по составу) с повышением $\mu_{\rm H}$ снижается точка Кюри T_{κ} (рис. 54).

Особенности ферритов:

- по электрическим свойствам ферриты являются диэлектриками или полупроводниками *p*-типа (ρ = 0,1...10¹⁰ Oм·м);
- малые магнитные потери;
- радиопрозрачны;
- по механическим свойствам это керамика, обладающая высокой твердостью и хрупкостью;
- для ферритов характерна сильная зависимость свойств от состава, дисперсности, режима спекания, температуры эксплуатации и др.

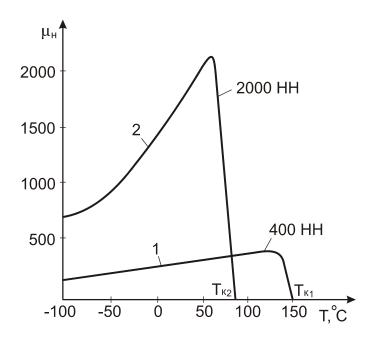


Рис. 54. Температурная зависимость начальной магнитной проницаемости µ_н никель-цинковых ферритов

Ферриты получают в виде поликристаллической керамики и монокристаллов. Для получения ферритов с заданными магнитными свойствами предъявляются жесткие требования к химической чистоте и дисперсности исходного сырья. В отличие от электрокерамики ферритовая керамика не содержит стекловидной фазы; все процессы массопереноса при синтезе соединений и спекания изделия происходят путем диффузии в твердой фазе. Формирование изделий осуществляется либо прессованием (предварительная пластификация водным раствором поливинилового спирта), либо литьем под давлением (пластификатор и связующее - парафин).

Изделия подвергают спеканию при температуре 1200...1400°С в контролируемой газовой среде. В процессе спекания завершаются химические реакции в твердой фазе, материал приобретает определенную структуру и магнитные свойства.

Ферриты, применяемые на радиочастотах

В качестве высокопроницаемых ферритов широко используются никель-цинковые и марганец-цинковые ферриты. Они кристаллизуются в структуре шпинели и представляют собой твердые растворы замещения, образованные двумя простыми ферритами, один из которых, $NiFe_2O_4$ или $MnFe_2O_4$, является ферримагнетиком, а другой, $ZnFe_2O_4$ - немагнитен. Для никель-цинкового феррита максималь-

ному значению начальной магнитной проницаемости соответствует состав: $50\%\text{Fe}_2\text{O}_3$, 15%NiO и 35%ZnO. Этому составу соответствует твердый раствор $\text{Ni}_{1-X}\text{Zn}_X\text{Fe}_2\text{O}_4$ - с X=0,7.

Маркировка ферритов: на первом месте стоит численное значение начальной магнитной проницаемости μ_H , затем - буквы, определяющие частотный диапазон применения, H - низкочастотные ($f_{\kappa\rho} = 0,1...20$ МГц), ВЧ - высокочастотные, с $f_{\kappa\rho} = 30...300$ МГц. Далее следуют буквы, указывающие состав феррита: «Н» - никельцинковый, «М» - марганец-цинковый.

Свойства некоторых ферритов показаны в табл. 23.

Таблица 23 Ферриты, применяемые на радиочастотах

Марка	μн	ρ, Ом ⁻ м	$f_{\kappa p}$, МГц при $tg\delta = 0,1$	Применение	
4000 HM	4000	10 ³	0,1		
1000 HM	1000	3·10 ³	1,0	до 3 МГц	
1000 HM3	1000	10 ⁵	2,2		
1000 HH	1000	10 ⁵	0,4	до 2 МГц в слабых и	
400 HH	400	10 ⁶	2,0	средних полях	
300 HH	300	10 ⁸	5,0	TO SE MEU	
60 HH	60	10 ⁸	5,5	до 55 МГц	
100 BY	100	10 ¹⁰	35	до 200 МГц в слабых	
30 BY2	30	10 ¹¹	200	полях	

Марганец-цинковые ферриты имеют более высокую магнитную проницаемость и точку Кюри, но сравнительно невысокое ρ = $10^3...10^5$ Ом·м, что ограничивает их использование до 3 МГц, а никель-цинковые ферриты – высокое ρ (до 10^{11} Ом·м) и лучшие частотные характеристики.

Ферриты, применяемые на высоких и сверхвысоких частотах (СВЧ)

На высоких частотах (до 800 МГц) применяют литиевый (Li_2O :5 Fe_2O_3), кобальт-бариевый (Co:Ba)O: Fe_2O_3 и др. более сложные ферриты с ГПУ решеткой.

В устройствах СВЧ диапазона (>800 МГц) необходимо управлять электромагнитным потоком: переключать поток энергии с одного направления на другое, изменять фазу колебаний, поворачивать

плоскость поляризации волны, частично или полностью поглощать мощность потока. Электромагнитные волны могут распространяться в пространстве, заполненном диэлектриком, а от металлов они почти полностью отражаются. Поэтому металлические поверхности используют для направления волн, их концентрации или рассеяния. Электромагнитная энергия СВЧ чаще всего передается по волноводам, представляющим собой полые или частично заполненные твердым материалом металлические трубы. В качестве твердых материалов для управления потоком энергии в волноводах используют ферриты СВЧ и некоторые активные диэлектрики.

Применение ферритов в СВЧ диапазоне основано на магнитооптическом эффекте Фарадея и явлении ферромагнитного резонанса.

Эффект Фарадея состоит в повороте плоскости поляризации высокочастотной поляризованной волны, распространяющейся вдоль феррита, подмагниченного постоянным полем. Угол поворота ф пропорционален длине стержня феррита и напряженности подмагничивающего поля. Чем меньше напряженность, требуемая для поворота плоскости поляризации на заданный угол ф, тем эффективнее феррит. Такие ферриты используются в антенных переключателях, циркуляторах, фазовращателях для распределения потока энергии СВЧ по отдельным волноводам.

Ферромагнитный резонанс возникает в тех случаях, когда на феррит, перемагничиваемый высокочастотным полем, наложено перпендикулярное постоянное магнитное поле H_o . Это поле вызывает прецессию орбитального момента электронов, частота которой ω_o изменяется пропорционально напряженности постоянного магнитного поля H_o . При определенной H_o значение ω_o совпадает с частотой высокочастотного поля и возникает ферромагнитный резонанс. Он проявляется в уменьшении μ_1 феррита (вдоль высокочастотного поля) и росте μ_2 (поперек феррита) в некоторой области ΔH_o , (рис. 55). В этой области резко возрастает $tg\delta$ и происходит полное или частичное поглощение потока энергии обратной электромагнитной волны. На этом принципе основано использование ферритов в высокочастотных вентилях, быстродействующих переключателях, управление мощностью потока СВЧ и др. устройствах. Большинство СВЧ преобразователей работают в до- и зарезонанс-

ных областях, поэтому важно обеспечить узкую линию резонанса ($\Delta H_{\rm o}$). Чем больше плотность и меньше анизотропия материала, тем меньше $\Delta H_{\rm o}$.

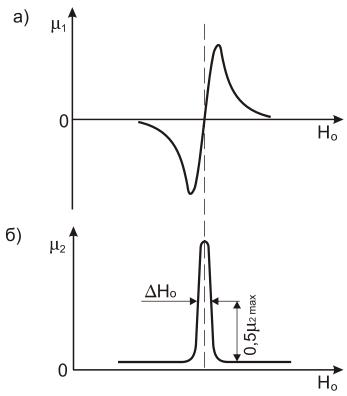


Рис. 55. Зависимость магнитной проницаемости феррограната от напряженности управляющего магнитного поля при ферромагнитном резонансе H_0 : а - $\mu_1(H_0)$ - вдоль феррита (вдоль распространения СВЧ поля); б - $\mu_2(H_0)$ - поперек феррита. Напряженность H_0 перпендикулярна напряженности СВЧ поля. ΔH_0 - ширина линии резонанса

Ферриты СВЧ устройств должны иметь высокое ρ =10 8 ...10 11 Ом·м , температурную стабильность свойств и высокую точку Кюри.

Маркировка ферритов СВЧ: 1СЧ, 2СЧ, 3СЧ...80СЧ. Цифра указывает длину волны в см, а СЧ - сверхвысокочастотный.

Применяемые ферриты

Для длин волн λ = 1...3 см применяются никелевый феррит, магний-марганцевый, никель-магниевый и др. ΔH_o > 100 A/м. При λ = 4...10 см используются тройные ферриты, содержащие MgO, MnO, ZnO, и полиферриты, содержащие кроме перечисленных оксидов CuO и CoO. CuO уменьшает пористость, а CoO - снижает константу

анизотропии. Для уменьшения намагниченности насыщения и снижения магнитных потерь вводят Cr_2O_3 , Al_2O_3 .

При $\lambda \ge 10$ см применяют феррогранаты $3Y_2O_3$: $5Fe_2O_3$ (10СЧ6, 30СЧ3, 40СЧ2, 60СЧ, 80СЧ и др.). Поликристаллические феррогранаты имеют узкую резонансную линию ($\Delta H_0 = 10...100$ А/м). Наиболее ценные свойства у монокристалла феррограната: $\Delta H_0 = 3...8$ А/м. Их используют на частотах 4000...5000 МГц.

5.7.4. Магнитные материалы специального назначения

Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, вычислительной технике, в аппаратуре телеграфной связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Именно благодаря этой особенности их можно использовать в качестве элементов для хранения и переработки двоичной информации. Запись и считывание информации осуществляются переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.

Двоичные элементы на магнитных сердечниках с ППГ характеризуются высокой надежностью, малыми габаритами, низкой стоимостью, стабильностью характеристик. Они обладают практически неограниченным сроком службы, сохраняют записанную информацию при отключенных источниках питания. Они имеют коэффициент прямоугольности α = Br/Bm = 0,9 и высокое быстродействие.

Наибольшее применение получили магний-марганцевые и литиевые ферриты. Наилучшие характеристики у ферритов состава MgO·3MnO·3Fe $_2$ O $_3$, а также у полиферритов, содержащих дополнительно оксиды цинка, кальция, лития. Ферритам свойственна спонтанная прямоугольная петля гистерезиса. Магнитная текстура формируется непосредственно при охлаждении после спекания в результате магнитострикционных явлений.

Устройства вычислительной техники из ферритов изготовляют в виде тонких пленок и слоистых матриц, что обеспечивает их малые размеры и высокое быстродействие.

Маркировка ферритов и их применение. Ферриты 10 ВТ, 30 ВТ, 56 ВТ применяются в переключающих устройствах, T_{κ} = 115... 160°C. Ферриты 100 ВТ, 140 ВТ, 180 ВТ - в запоминающих устройствах T_{κ} = 160...230°C. Расшифровка: цифры показывают значение коэрцитивной силы, А/м; а буквы ВТ - вычислительная техника.

Кроме ферритов используются микронные сердечники из пермаллоев 50 НП, 65 НП и 79НМП (ленты толщиной 1,5...3 мкм). Прямоугольную петлю гистерезиса получают кристаллографической текстурой при прокатке с большими степенями обжатия, либо магнитной текстурой (термомагнитной обработкой, рис. 56). Сердечники из анизотропной ленты толщиной 1,5 мкм могут работать при частоте до 1 МГц. По сравнению с ферритами сердечники из пермаллоев обладают высокой точкой Кюри 400...630°С и температурной стабильностью свойств. Но технология изготовления гораздо сложнее и дороже.

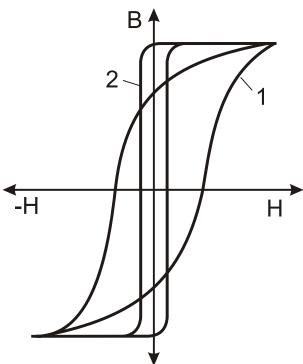


Рис. 56. Петля гистерезиса пермаллоя 65HП до (1) и после (2) термомагнитной обработки

Доменные структуры в тонких магнитных пленках

Наиболее интересны монокристаллические пленки ферритов с одноосной магнитной анизотропией, в которых одна ось легкого намагничивания перпендикулярна плоскости пленки. В отсутствие

внешнего поля пленка имеет лабиринтную доменную структуру (рис. 57,а), светлые и темные участки - это домены с противоположным направлением спонтанной намагниченности. Во внешнем магнитном поле, напряженность которого направлена вдоль оси легкого намагничивания, образуются цилиндрические магнитные домены - ЦМД (рис. 57,б). При большой напряженности поля пленка намагничивается однородно и ЦМД исчезают.

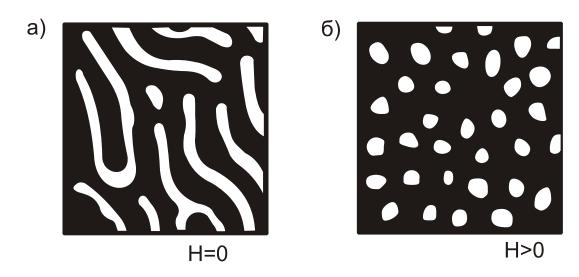


Рис. 57. Доменные структуры в тонких магнитных пленках

ЦМД существуют в определенном интервале напряженности магнитного поля. Их используют для создания логических и запоминающих устройств. В большинстве случаев (на различных ферритах) толщина пленки составляет десятки и сотни микрометров. В пленках феррогранатов линейный размер ЦМД - единицы микрометров.

Разработаны способы для генерации ЦМД, управления их перемещением и считывания информации. Управление осуществляется магнитостатическими ловушками путем нанесения пермаллоевых аппликаций определенной конфигурации на поверхность ферритовой пленки (рис. 58). Изменяя направление управляющего поля, действующего в плоскости пленки, можно изменять полярность магнитных зарядов на элементах аппликаций. Полярность полюсов условно обозначена «+» и «–». Предполагается, что ЦМД выходят на поверхность пленки отрицательными полюсами, т.е. притягиваются к положительным зарядам на элементах аппликаций.

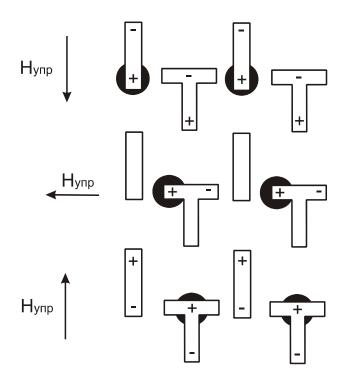


Рис. 58. Схема управления цилиндрическими магнитными доменами (ЦМД) с помощью пермаллоевых аппликаций

При коммутации управляющего поля напряженностью Н_{упр} ЦМД переходит с одной аппликации на другую. Считывать информацию можно с помощью датчиков Холла или магниторезисторов, электросопротивление которых изменяется в магнитном поле.

Устройства на цилиндрических магнитных доменах отличаются большой информационной емкостью и малой потребляемой мощностью.

Магнитострикционные материалы. Применение магнитострикционных материалов основано на явлении магнитострикции и магнитоупругом эффекте, т.е. изменении размеров тела в магнитном поле и магнитных свойств материала при механических воздействиях.

Для магнитострикционных материалов важно иметь высокие значения магнитных характеристик: константы магнитострикции λ_s , индукции насыщения B_s , коэрцитивной силы H_c , температуры Кюри T_K (чем выше T_K , тем выше стабильность характеристик).

Добротность магнитострикционного материала характеризует магнитострикционная постоянная $a = \sigma/B$, σ - напряжение, Па; B - индукция, Тл, соответствующая этому напряжению.

Значение магнитострикционной постоянной а определяют в процессе намагничивания сердечника при его фиксированной деформации (сердечник предварительно упруго сжат). Чем выше характеристики, тем лучше материал.

В качестве магнитострикционных материалов используют металлические сплавы (табл. 24) и ферриты.

Таблица 24 Свойства магнитострикционных сплавов

Марка, состав %	λ _s ·10 ⁶	<i>В</i> _s , Тл	<i>H_c</i> , А/м	T_{κ} ,°C	<i>a</i> ·10 ⁷ Па/Тл
49К2Ф (49Co, 2V, Fe - ост.)	70	2,4	140	980	2,2
65К (65Со, Fe - ост.)	90	2,2	100	980	1,5
14Ю (14АІ, Fe - ост.)	40	1,2	25	500	1,2
12Ю (12АІ, Fe - ост.)	40	1,6	10	600	0,9

Недостатком железокобальтовых и железоалюминиевых сплавов является низкая пластичность, затрудняющая механическую обработку, и низкая антикоррозионная стойкость, препятствующая их использованию в водной среде.

Широкое применение в высокочастотных магнитострикционных устройствах находит ферритовая керамика. По сравнению с металлическими сплавами магнитостркционные ферриты имеют ряд преимуществ:

- ничтожно малые магнитные потери, высокое ρ;
- ферритовая керамика не подвержена действию агрессивных сред;
- из ферритовой керамики можно изготовлять преобразователи любых форм и размеров.

По составу магнитострикционная ферритовая керамика представляет собой либо чистый феррит никеля (NiFe₂O₄), либо твердые растворы феррита никеля, кобальта, меди с λ = -25·10⁻⁶.

Из магнитострикционных материалов изготовляют сердечники электромеханических преобразователей (излучателей и приемников) для электроакустической и ультразвуковой техники, сердечники

электромеханических и магнитострикционных фильтров и резонаторов, линии задержки. Их используют также в качестве чувствительных элементов магнитоупругих преобразователей, применяемых в устройствах автоматики и измерительной техники.